On the Rademacher Complexity of Weighted Automata
نویسندگان
چکیده
Weighted automata (WFAs) provide a general framework for the representation of functions mapping strings to real numbers. They include as special instances deterministic finite automata (DFAs), hidden Markov models (HMMs), and predictive states representations (PSRs). In recent years, there has been a renewed interest in weighted automata in machine learning due to the development of efficient and provably correct spectral algorithms for learning weighted automata. Despite the effectiveness reported for spectral techniques in real-world problems, almost all existing statistical guarantees for spectral learning of weighted automata rely on a strong realizability assumption. In this paper, we initiate a systematic study of the learning guarantees for broad classes of weighted automata in an agnostic setting. Our results include bounds on the Rademacher complexity of three general classes of weighted automata, each described in terms of different natural quantities. Interestingly, these bounds underline the key role of different data-dependent parameters in the convergence rates.
منابع مشابه
Generalization Bounds for Weighted Automata
This paper studies the problem of learning weighted automata from a finite labeled training sample. We consider several general families of weighted automata defined in terms of three different measures: the norm of an automaton’s weights, the norm of the function computed by an automaton, or the norm of the corresponding Hankel matrix. We present new data-dependent generalization guarantees fo...
متن کاملGeneralization bounds for learning weighted automata
This paper studies the problem of learning weighted automata from a finite sample of strings with real-valued labels. We consider several hypothesis classes of weighted automata defined in terms of three different measures: the norm of an automaton’s weights, the norm of the function computed by an automaton, and the norm of the corresponding Hankel matrix. We present new data-dependent general...
متن کاملReduction of Computational Complexity in Finite State Automata Explosion of Networked System Diagnosis (RESEARCH NOTE)
This research puts forward rough finite state automata which have been represented by two variants of BDD called ROBDD and ZBDD. The proposed structures have been used in networked system diagnosis and can overcome cominatorial explosion. In implementation the CUDD - Colorado University Decision Diagrams package is used. A mathematical proof for claimed complexity are provided which shows ZBDD ...
متن کاملApproximate Inference via Weighted Rademacher Complexity
Rademacher complexity is often used to characterize the learnability of a hypothesis class and is known to be related to the class size. We leverage this observation and introduce a new technique for estimating the size of an arbitrary weighted set, defined as the sum of weights of all elements in the set. Our technique provides upper and lower bounds on a novel generalization of Rademacher com...
متن کاملNested Weighted Limit-Average Automata of Bounded Width
While weighted automata provide a natural framework to express quantitative properties, many basic properties like average response time cannot be expressed with weighted automata. Nested weighted automata extend weighted automata and consist of a master automaton and a set of slave automata that are invoked by the master automaton. Nested weighted automata are strictly more expressive than wei...
متن کامل